Theory of the proofreading mechanism of DNA Polymerase: a new kinetic model with higher-order terminal effects
نویسندگان
چکیده
The fidelity of DNA replication by DNA polymerase (DNAP) has long been an important issue in biology. While numerous experiments have revealed details of the molecular structure and working mechanism of DNAP which consists of both a polymerase site and an exonuclease (proofreading) site, there were quite few theoretical studies on the fidelity issue. The first model which explicitly considered both sites was proposed in 1970s’ and the basic idea was widely accepted by later models. However, all these models did not systematically and rigorously investigate the dominant factor on DNAP fidelity, i.e, the higher-order terminal effects through which the polymerization pathway and the proofreading pathway coordinate to achieve high fidelity. In this paper, we propose a new and comprehensive kinetic model of DNAP based on some recent experimental observations, which includes previous models as special cases. We present a rigorous and unified treatment of the corresponding steady-state kinetic equations of any-order terminal effects, and derive analytical expressions for fidelity in terms of kinetic parameters under bio-relevant conditions. These expressions offer new insights on how the the higher-order terminal effects contribute substantially to the fidelity in an order-by-order way, and also show that the polymerization-and-proofreading mechanism is dominated only by very few key parameters. We then apply these results to calculate the fidelity of some real DNAPs, which are in good agreements with previous intuitive estimates given by experimentalists.
منابع مشابه
On the mechanism of preferential incorporation of dAMP at abasic sites in translesional DNA synthesis. Role of proofreading activity of DNA polymerase and thermodynamic characterization of model template-primers containing an abasic site
DNA polymerase preferentially incorporate dAMP opposite abasic sites (A-rule). The mechanism of the A-rule can be studied by analyzing three dissected stages of the reaction including (i) initial nucleotide insertion, (ii) proofreading excision of the inserted nucleotide and (iii) extension of the nascent primer terminus. To assess the role of the stage (ii) in the A-rule, kinetic parameters of...
متن کاملFidelity of Escherichia coli DNA polymerase III holoenzyme. The effects of beta, gamma complex processivity proteins and epsilon proofreading exonuclease on nucleotide misincorporation efficiencies.
The fidelity of Escherichia coli DNA polymerase III (pol III) is measured and the effects of beta, gamma processivity and epsilon proofreading subunits are evaluated using a gel kinetic assay. Pol III holoenzyme synthesizes DNA with extremely high fidelity, misincorporating dTMP, dAMP, and dGMP opposite a template G target with efficiencies finc = 5.6 x 10(-6), 4.2 x 10(-7), and 7 x 10(-7), res...
متن کاملFree vibration and wave propagation of thick plates using the generalized nonlocal strain gradient theory
In this paper, a size-dependent first-order shear deformation plate model is formulated in the framework of the higher-order generalized nonlocal strain-gradient (GNSG) theory. This modelemploys ...
متن کاملKinetics and thermodynamics of DNA polymerases with exonuclease proofreading.
Kinetic theory and thermodynamics are applied to DNA polymerases with exonuclease activity, taking into account the dependence of the rates on the previously incorporated nucleotide. The replication fidelity is shown to increase significantly thanks to this dependence at the basis of the mechanism of exonuclease proofreading. In particular, this dependence can provide up to a 100-fold lowering ...
متن کاملIdentification of a transient excision intermediate at the crossroads between DNA polymerase extension and proofreading pathways.
DNA polymerases achieve accurate DNA replication through a delicate balance between primer elongation and proofreading. While insufficient proofreading results in DNA replication errors, indiscriminate removal of correct along with incorrect nucleotides is wasteful and may prevent completion of DNA synthesis. The transition between polymerization and proofreading modes is proposed to be governe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016